Properties

Label 3822.2803
Modulus $3822$
Conductor $637$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,26,21]))
 
pari: [g,chi] = znchar(Mod(2803,3822))
 

Basic properties

Modulus: \(3822\)
Conductor: \(637\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{637}(255,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3822.ei

\(\chi_{3822}(73,\cdot)\) \(\chi_{3822}(187,\cdot)\) \(\chi_{3822}(229,\cdot)\) \(\chi_{3822}(577,\cdot)\) \(\chi_{3822}(733,\cdot)\) \(\chi_{3822}(775,\cdot)\) \(\chi_{3822}(1123,\cdot)\) \(\chi_{3822}(1165,\cdot)\) \(\chi_{3822}(1279,\cdot)\) \(\chi_{3822}(1321,\cdot)\) \(\chi_{3822}(1669,\cdot)\) \(\chi_{3822}(1711,\cdot)\) \(\chi_{3822}(1825,\cdot)\) \(\chi_{3822}(1867,\cdot)\) \(\chi_{3822}(2215,\cdot)\) \(\chi_{3822}(2257,\cdot)\) \(\chi_{3822}(2413,\cdot)\) \(\chi_{3822}(2761,\cdot)\) \(\chi_{3822}(2803,\cdot)\) \(\chi_{3822}(2917,\cdot)\) \(\chi_{3822}(3307,\cdot)\) \(\chi_{3822}(3349,\cdot)\) \(\chi_{3822}(3463,\cdot)\) \(\chi_{3822}(3505,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((2549,3433,1471)\) → \((1,e\left(\frac{13}{42}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3822 }(2803, a) \) \(1\)\(1\)\(e\left(\frac{19}{84}\right)\)\(e\left(\frac{11}{84}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{55}{84}\right)\)\(e\left(\frac{25}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3822 }(2803,a) \;\) at \(\;a = \) e.g. 2