Properties

Label 3822.883
Modulus 38223822
Conductor 1313
Order 22
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,1]))
 
pari: [g,chi] = znchar(Mod(883,3822))
 

Basic properties

Modulus: 38223822
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ13(12,)\chi_{13}(12,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3822.c

χ3822(883,)\chi_{3822}(883,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(13)\Q(\sqrt{13})

Values on generators

(2549,3433,1471)(2549,3433,1471)(1,1,1)(1,1,-1)

First values

aa 1-11155111117171919232325252929313137374141
χ3822(883,a) \chi_{ 3822 }(883, a) 11111-11-1111-11111111-11-11-1
sage: chi.jacobi_sum(n)
 
χ3822(883,a)   \chi_{ 3822 }(883,a) \; at   a=\;a = e.g. 2