from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(385, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([45,40,54]))
pari: [g,chi] = znchar(Mod(193,385))
Basic properties
Modulus: | \(385\) | |
Conductor: | \(385\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 385.bv
\(\chi_{385}(2,\cdot)\) \(\chi_{385}(18,\cdot)\) \(\chi_{385}(72,\cdot)\) \(\chi_{385}(107,\cdot)\) \(\chi_{385}(123,\cdot)\) \(\chi_{385}(128,\cdot)\) \(\chi_{385}(172,\cdot)\) \(\chi_{385}(193,\cdot)\) \(\chi_{385}(228,\cdot)\) \(\chi_{385}(233,\cdot)\) \(\chi_{385}(277,\cdot)\) \(\chi_{385}(282,\cdot)\) \(\chi_{385}(303,\cdot)\) \(\chi_{385}(338,\cdot)\) \(\chi_{385}(347,\cdot)\) \(\chi_{385}(382,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((232,276,211)\) → \((-i,e\left(\frac{2}{3}\right),e\left(\frac{9}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
\( \chi_{ 385 }(193, a) \) | \(1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)