from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3888, base_ring=CyclotomicField(324))
M = H._module
chi = DirichletCharacter(H, M([162,81,260]))
pari: [g,chi] = znchar(Mod(43,3888))
χ3888(43,⋅)
χ3888(67,⋅)
χ3888(115,⋅)
χ3888(139,⋅)
χ3888(187,⋅)
χ3888(211,⋅)
χ3888(259,⋅)
χ3888(283,⋅)
χ3888(331,⋅)
χ3888(355,⋅)
χ3888(403,⋅)
χ3888(427,⋅)
χ3888(475,⋅)
χ3888(499,⋅)
χ3888(547,⋅)
χ3888(571,⋅)
χ3888(619,⋅)
χ3888(643,⋅)
χ3888(691,⋅)
χ3888(715,⋅)
χ3888(763,⋅)
χ3888(787,⋅)
χ3888(835,⋅)
χ3888(859,⋅)
χ3888(907,⋅)
χ3888(931,⋅)
χ3888(979,⋅)
χ3888(1003,⋅)
χ3888(1051,⋅)
χ3888(1075,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,2917,1217) → (−1,i,e(8165))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ3888(43,a) |
−1 | 1 | e(324229) | e(8114) | e(324275) | e(32455) | e(2713) | e(10847) | e(8113) | e(16267) | e(324143) | e(16289) |