Properties

Label 3888.43
Modulus 38883888
Conductor 38883888
Order 324324
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(324))
 
M = H._module
 
chi = DirichletCharacter(H, M([162,81,260]))
 
pari: [g,chi] = znchar(Mod(43,3888))
 

Basic properties

Modulus: 38883888
Conductor: 38883888
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 324324
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.cf

χ3888(43,)\chi_{3888}(43,\cdot) χ3888(67,)\chi_{3888}(67,\cdot) χ3888(115,)\chi_{3888}(115,\cdot) χ3888(139,)\chi_{3888}(139,\cdot) χ3888(187,)\chi_{3888}(187,\cdot) χ3888(211,)\chi_{3888}(211,\cdot) χ3888(259,)\chi_{3888}(259,\cdot) χ3888(283,)\chi_{3888}(283,\cdot) χ3888(331,)\chi_{3888}(331,\cdot) χ3888(355,)\chi_{3888}(355,\cdot) χ3888(403,)\chi_{3888}(403,\cdot) χ3888(427,)\chi_{3888}(427,\cdot) χ3888(475,)\chi_{3888}(475,\cdot) χ3888(499,)\chi_{3888}(499,\cdot) χ3888(547,)\chi_{3888}(547,\cdot) χ3888(571,)\chi_{3888}(571,\cdot) χ3888(619,)\chi_{3888}(619,\cdot) χ3888(643,)\chi_{3888}(643,\cdot) χ3888(691,)\chi_{3888}(691,\cdot) χ3888(715,)\chi_{3888}(715,\cdot) χ3888(763,)\chi_{3888}(763,\cdot) χ3888(787,)\chi_{3888}(787,\cdot) χ3888(835,)\chi_{3888}(835,\cdot) χ3888(859,)\chi_{3888}(859,\cdot) χ3888(907,)\chi_{3888}(907,\cdot) χ3888(931,)\chi_{3888}(931,\cdot) χ3888(979,)\chi_{3888}(979,\cdot) χ3888(1003,)\chi_{3888}(1003,\cdot) χ3888(1051,)\chi_{3888}(1051,\cdot) χ3888(1075,)\chi_{3888}(1075,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ324)\Q(\zeta_{324})
Fixed field: Number field defined by a degree 324 polynomial (not computed)

Values on generators

(2431,2917,1217)(2431,2917,1217)(1,i,e(6581))(-1,i,e\left(\frac{65}{81}\right))

First values

aa 1-111557711111313171719192323252529293131
χ3888(43,a) \chi_{ 3888 }(43, a) 1-111e(229324)e\left(\frac{229}{324}\right)e(1481)e\left(\frac{14}{81}\right)e(275324)e\left(\frac{275}{324}\right)e(55324)e\left(\frac{55}{324}\right)e(1327)e\left(\frac{13}{27}\right)e(47108)e\left(\frac{47}{108}\right)e(1381)e\left(\frac{13}{81}\right)e(67162)e\left(\frac{67}{162}\right)e(143324)e\left(\frac{143}{324}\right)e(89162)e\left(\frac{89}{162}\right)
sage: chi.jacobi_sum(n)
 
χ3888(43,a)   \chi_{ 3888 }(43,a) \; at   a=\;a = e.g. 2