Properties

Label 3895.1017
Modulus $3895$
Conductor $3895$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,170,81]))
 
pari: [g,chi] = znchar(Mod(1017,3895))
 

Basic properties

Modulus: \(3895\)
Conductor: \(3895\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(180\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.gc

\(\chi_{3895}(2,\cdot)\) \(\chi_{3895}(128,\cdot)\) \(\chi_{3895}(203,\cdot)\) \(\chi_{3895}(307,\cdot)\) \(\chi_{3895}(333,\cdot)\) \(\chi_{3895}(402,\cdot)\) \(\chi_{3895}(412,\cdot)\) \(\chi_{3895}(623,\cdot)\) \(\chi_{3895}(717,\cdot)\) \(\chi_{3895}(718,\cdot)\) \(\chi_{3895}(743,\cdot)\) \(\chi_{3895}(812,\cdot)\) \(\chi_{3895}(922,\cdot)\) \(\chi_{3895}(1017,\cdot)\) \(\chi_{3895}(1153,\cdot)\) \(\chi_{3895}(1238,\cdot)\) \(\chi_{3895}(1307,\cdot)\) \(\chi_{3895}(1332,\cdot)\) \(\chi_{3895}(1333,\cdot)\) \(\chi_{3895}(1427,\cdot)\) \(\chi_{3895}(1648,\cdot)\) \(\chi_{3895}(1742,\cdot)\) \(\chi_{3895}(1743,\cdot)\) \(\chi_{3895}(1837,\cdot)\) \(\chi_{3895}(1853,\cdot)\) \(\chi_{3895}(1922,\cdot)\) \(\chi_{3895}(1948,\cdot)\) \(\chi_{3895}(2048,\cdot)\) \(\chi_{3895}(2257,\cdot)\) \(\chi_{3895}(2263,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((3117,2871,1236)\) → \((i,e\left(\frac{17}{18}\right),e\left(\frac{9}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 3895 }(1017, a) \) \(1\)\(1\)\(e\left(\frac{161}{180}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{71}{90}\right)\)\(e\left(\frac{121}{180}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{19}{45}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3895 }(1017,a) \;\) at \(\;a = \) e.g. 2