Properties

Label 3895.1017
Modulus 38953895
Conductor 38953895
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,170,81]))
 
pari: [g,chi] = znchar(Mod(1017,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.gc

χ3895(2,)\chi_{3895}(2,\cdot) χ3895(128,)\chi_{3895}(128,\cdot) χ3895(203,)\chi_{3895}(203,\cdot) χ3895(307,)\chi_{3895}(307,\cdot) χ3895(333,)\chi_{3895}(333,\cdot) χ3895(402,)\chi_{3895}(402,\cdot) χ3895(412,)\chi_{3895}(412,\cdot) χ3895(623,)\chi_{3895}(623,\cdot) χ3895(717,)\chi_{3895}(717,\cdot) χ3895(718,)\chi_{3895}(718,\cdot) χ3895(743,)\chi_{3895}(743,\cdot) χ3895(812,)\chi_{3895}(812,\cdot) χ3895(922,)\chi_{3895}(922,\cdot) χ3895(1017,)\chi_{3895}(1017,\cdot) χ3895(1153,)\chi_{3895}(1153,\cdot) χ3895(1238,)\chi_{3895}(1238,\cdot) χ3895(1307,)\chi_{3895}(1307,\cdot) χ3895(1332,)\chi_{3895}(1332,\cdot) χ3895(1333,)\chi_{3895}(1333,\cdot) χ3895(1427,)\chi_{3895}(1427,\cdot) χ3895(1648,)\chi_{3895}(1648,\cdot) χ3895(1742,)\chi_{3895}(1742,\cdot) χ3895(1743,)\chi_{3895}(1743,\cdot) χ3895(1837,)\chi_{3895}(1837,\cdot) χ3895(1853,)\chi_{3895}(1853,\cdot) χ3895(1922,)\chi_{3895}(1922,\cdot) χ3895(1948,)\chi_{3895}(1948,\cdot) χ3895(2048,)\chi_{3895}(2048,\cdot) χ3895(2257,)\chi_{3895}(2257,\cdot) χ3895(2263,)\chi_{3895}(2263,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(i,e(1718),e(920))(i,e\left(\frac{17}{18}\right),e\left(\frac{9}{20}\right))

First values

aa 1-11122334466778899111112121313
χ3895(1017,a) \chi_{ 3895 }(1017, a) 1111e(161180)e\left(\frac{161}{180}\right)e(79)e\left(\frac{7}{9}\right)e(7190)e\left(\frac{71}{90}\right)e(121180)e\left(\frac{121}{180}\right)e(715)e\left(\frac{7}{15}\right)e(4160)e\left(\frac{41}{60}\right)e(59)e\left(\frac{5}{9}\right)e(4160)e\left(\frac{41}{60}\right)e(1730)e\left(\frac{17}{30}\right)e(1945)e\left(\frac{19}{45}\right)
sage: chi.jacobi_sum(n)
 
χ3895(1017,a)   \chi_{ 3895 }(1017,a) \; at   a=\;a = e.g. 2