from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([45,170,81]))
pari: [g,chi] = znchar(Mod(1017,3895))
χ3895(2,⋅)
χ3895(128,⋅)
χ3895(203,⋅)
χ3895(307,⋅)
χ3895(333,⋅)
χ3895(402,⋅)
χ3895(412,⋅)
χ3895(623,⋅)
χ3895(717,⋅)
χ3895(718,⋅)
χ3895(743,⋅)
χ3895(812,⋅)
χ3895(922,⋅)
χ3895(1017,⋅)
χ3895(1153,⋅)
χ3895(1238,⋅)
χ3895(1307,⋅)
χ3895(1332,⋅)
χ3895(1333,⋅)
χ3895(1427,⋅)
χ3895(1648,⋅)
χ3895(1742,⋅)
χ3895(1743,⋅)
χ3895(1837,⋅)
χ3895(1853,⋅)
χ3895(1922,⋅)
χ3895(1948,⋅)
χ3895(2048,⋅)
χ3895(2257,⋅)
χ3895(2263,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3117,2871,1236) → (i,e(1817),e(209))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ3895(1017,a) |
1 | 1 | e(180161) | e(97) | e(9071) | e(180121) | e(157) | e(6041) | e(95) | e(6041) | e(3017) | e(4519) |