Properties

Label 3895.1117
Modulus 38953895
Conductor 38953895
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,110,36]))
 
pari: [g,chi] = znchar(Mod(1117,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.fy

χ3895(78,)\chi_{3895}(78,\cdot) χ3895(98,)\chi_{3895}(98,\cdot) χ3895(223,)\chi_{3895}(223,\cdot) χ3895(242,)\chi_{3895}(242,\cdot) χ3895(262,)\chi_{3895}(262,\cdot) χ3895(338,)\chi_{3895}(338,\cdot) χ3895(428,)\chi_{3895}(428,\cdot) χ3895(447,)\chi_{3895}(447,\cdot) χ3895(488,)\chi_{3895}(488,\cdot) χ3895(508,)\chi_{3895}(508,\cdot) χ3895(592,)\chi_{3895}(592,\cdot) χ3895(713,)\chi_{3895}(713,\cdot) χ3895(838,)\chi_{3895}(838,\cdot) χ3895(857,)\chi_{3895}(857,\cdot) χ3895(877,)\chi_{3895}(877,\cdot) χ3895(953,)\chi_{3895}(953,\cdot) χ3895(1002,)\chi_{3895}(1002,\cdot) χ3895(1117,)\chi_{3895}(1117,\cdot) χ3895(1123,)\chi_{3895}(1123,\cdot) χ3895(1207,)\chi_{3895}(1207,\cdot) χ3895(1248,)\chi_{3895}(1248,\cdot) χ3895(1267,)\chi_{3895}(1267,\cdot) χ3895(1287,)\chi_{3895}(1287,\cdot) χ3895(1363,)\chi_{3895}(1363,\cdot) χ3895(1492,)\chi_{3895}(1492,\cdot) χ3895(1533,)\chi_{3895}(1533,\cdot) χ3895(1568,)\chi_{3895}(1568,\cdot) χ3895(1617,)\chi_{3895}(1617,\cdot) χ3895(1732,)\chi_{3895}(1732,\cdot) χ3895(1902,)\chi_{3895}(1902,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(i,e(1118),e(15))(i,e\left(\frac{11}{18}\right),e\left(\frac{1}{5}\right))

First values

aa 1-11122334466778899111112121313
χ3895(1117,a) \chi_{ 3895 }(1117, a) 1111e(11180)e\left(\frac{11}{180}\right)e(2536)e\left(\frac{25}{36}\right)e(1190)e\left(\frac{11}{90}\right)e(3445)e\left(\frac{34}{45}\right)e(4360)e\left(\frac{43}{60}\right)e(1160)e\left(\frac{11}{60}\right)e(718)e\left(\frac{7}{18}\right)e(1415)e\left(\frac{14}{15}\right)e(4960)e\left(\frac{49}{60}\right)e(1180)e\left(\frac{1}{180}\right)
sage: chi.jacobi_sum(n)
 
χ3895(1117,a)   \chi_{ 3895 }(1117,a) \; at   a=\;a = e.g. 2