from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([45,110,36]))
pari: [g,chi] = znchar(Mod(1117,3895))
χ3895(78,⋅)
χ3895(98,⋅)
χ3895(223,⋅)
χ3895(242,⋅)
χ3895(262,⋅)
χ3895(338,⋅)
χ3895(428,⋅)
χ3895(447,⋅)
χ3895(488,⋅)
χ3895(508,⋅)
χ3895(592,⋅)
χ3895(713,⋅)
χ3895(838,⋅)
χ3895(857,⋅)
χ3895(877,⋅)
χ3895(953,⋅)
χ3895(1002,⋅)
χ3895(1117,⋅)
χ3895(1123,⋅)
χ3895(1207,⋅)
χ3895(1248,⋅)
χ3895(1267,⋅)
χ3895(1287,⋅)
χ3895(1363,⋅)
χ3895(1492,⋅)
χ3895(1533,⋅)
χ3895(1568,⋅)
χ3895(1617,⋅)
χ3895(1732,⋅)
χ3895(1902,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3117,2871,1236) → (i,e(1811),e(51))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ3895(1117,a) |
1 | 1 | e(18011) | e(3625) | e(9011) | e(4534) | e(6043) | e(6011) | e(187) | e(1514) | e(6049) | e(1801) |