Properties

Label 3895.1129
Modulus 38953895
Conductor 38953895
Order 120120
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([60,20,87]))
 
pari: [g,chi] = znchar(Mod(1129,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 120120
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.fn

χ3895(69,)\chi_{3895}(69,\cdot) χ3895(179,)\chi_{3895}(179,\cdot) χ3895(259,)\chi_{3895}(259,\cdot) χ3895(274,)\chi_{3895}(274,\cdot) χ3895(354,)\chi_{3895}(354,\cdot) χ3895(464,)\chi_{3895}(464,\cdot) χ3895(544,)\chi_{3895}(544,\cdot) χ3895(559,)\chi_{3895}(559,\cdot) χ3895(639,)\chi_{3895}(639,\cdot) χ3895(749,)\chi_{3895}(749,\cdot) χ3895(844,)\chi_{3895}(844,\cdot) χ3895(924,)\chi_{3895}(924,\cdot) χ3895(1019,)\chi_{3895}(1019,\cdot) χ3895(1114,)\chi_{3895}(1114,\cdot) χ3895(1129,)\chi_{3895}(1129,\cdot) χ3895(1224,)\chi_{3895}(1224,\cdot) χ3895(1319,)\chi_{3895}(1319,\cdot) χ3895(1874,)\chi_{3895}(1874,\cdot) χ3895(2079,)\chi_{3895}(2079,\cdot) χ3895(2349,)\chi_{3895}(2349,\cdot) χ3895(2554,)\chi_{3895}(2554,\cdot) χ3895(3109,)\chi_{3895}(3109,\cdot) χ3895(3204,)\chi_{3895}(3204,\cdot) χ3895(3299,)\chi_{3895}(3299,\cdot) χ3895(3314,)\chi_{3895}(3314,\cdot) χ3895(3409,)\chi_{3895}(3409,\cdot) χ3895(3504,)\chi_{3895}(3504,\cdot) χ3895(3584,)\chi_{3895}(3584,\cdot) χ3895(3679,)\chi_{3895}(3679,\cdot) χ3895(3789,)\chi_{3895}(3789,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ120)\Q(\zeta_{120})
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(1,e(16),e(2940))(-1,e\left(\frac{1}{6}\right),e\left(\frac{29}{40}\right))

First values

aa 1-11122334466778899111112121313
χ3895(1129,a) \chi_{ 3895 }(1129, a) 1111e(3160)e\left(\frac{31}{60}\right)e(1324)e\left(\frac{13}{24}\right)e(130)e\left(\frac{1}{30}\right)e(7120)e\left(\frac{7}{120}\right)e(3140)e\left(\frac{31}{40}\right)e(1120)e\left(\frac{11}{20}\right)e(112)e\left(\frac{1}{12}\right)e(740)e\left(\frac{7}{40}\right)e(2340)e\left(\frac{23}{40}\right)e(97120)e\left(\frac{97}{120}\right)
sage: chi.jacobi_sum(n)
 
χ3895(1129,a)   \chi_{ 3895 }(1129,a) \; at   a=\;a = e.g. 2