Properties

Label 3895.1434
Modulus $3895$
Conductor $3895$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,8,9]))
 
pari: [g,chi] = znchar(Mod(1434,3895))
 

Basic properties

Modulus: \(3895\)
Conductor: \(3895\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.ci

\(\chi_{3895}(614,\cdot)\) \(\chi_{3895}(1024,\cdot)\) \(\chi_{3895}(1434,\cdot)\) \(\chi_{3895}(1639,\cdot)\) \(\chi_{3895}(2049,\cdot)\) \(\chi_{3895}(2664,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((3117,2871,1236)\) → \((-1,e\left(\frac{4}{9}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 3895 }(1434, a) \) \(1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3895 }(1434,a) \;\) at \(\;a = \) e.g. 2