Properties

Label 3895.1434
Modulus 38953895
Conductor 38953895
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,8,9]))
 
pari: [g,chi] = znchar(Mod(1434,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.ci

χ3895(614,)\chi_{3895}(614,\cdot) χ3895(1024,)\chi_{3895}(1024,\cdot) χ3895(1434,)\chi_{3895}(1434,\cdot) χ3895(1639,)\chi_{3895}(1639,\cdot) χ3895(2049,)\chi_{3895}(2049,\cdot) χ3895(2664,)\chi_{3895}(2664,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(3117,2871,1236)(3117,2871,1236)(1,e(49),1)(-1,e\left(\frac{4}{9}\right),-1)

First values

aa 1-11122334466778899111112121313
χ3895(1434,a) \chi_{ 3895 }(1434, a) 1111e(1718)e\left(\frac{17}{18}\right)e(79)e\left(\frac{7}{9}\right)e(89)e\left(\frac{8}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(29)e\left(\frac{2}{9}\right)
sage: chi.jacobi_sum(n)
 
χ3895(1434,a)   \chi_{ 3895 }(1434,a) \; at   a=\;a = e.g. 2