Properties

Label 3895.312
Modulus $3895$
Conductor $3895$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,10,6]))
 
pari: [g,chi] = znchar(Mod(312,3895))
 

Basic properties

Modulus: \(3895\)
Conductor: \(3895\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.eo

\(\chi_{3895}(107,\cdot)\) \(\chi_{3895}(312,\cdot)\) \(\chi_{3895}(373,\cdot)\) \(\chi_{3895}(392,\cdot)\) \(\chi_{3895}(578,\cdot)\) \(\chi_{3895}(597,\cdot)\) \(\chi_{3895}(1152,\cdot)\) \(\chi_{3895}(1357,\cdot)\) \(\chi_{3895}(2368,\cdot)\) \(\chi_{3895}(2573,\cdot)\) \(\chi_{3895}(3147,\cdot)\) \(\chi_{3895}(3223,\cdot)\) \(\chi_{3895}(3352,\cdot)\) \(\chi_{3895}(3428,\cdot)\) \(\chi_{3895}(3508,\cdot)\) \(\chi_{3895}(3713,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((3117,2871,1236)\) → \((i,e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 3895 }(312, a) \) \(1\)\(1\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{41}{60}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3895 }(312,a) \;\) at \(\;a = \) e.g. 2