from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([90,160,153]))
pari: [g,chi] = znchar(Mod(594,3895))
χ3895(74,⋅)
χ3895(169,⋅)
χ3895(244,⋅)
χ3895(289,⋅)
χ3895(389,⋅)
χ3895(484,⋅)
χ3895(579,⋅)
χ3895(594,⋅)
χ3895(689,⋅)
χ3895(784,⋅)
χ3895(859,⋅)
χ3895(1004,⋅)
χ3895(1099,⋅)
χ3895(1184,⋅)
χ3895(1194,⋅)
χ3895(1279,⋅)
χ3895(1374,⋅)
χ3895(1594,⋅)
χ3895(1619,⋅)
χ3895(1689,⋅)
χ3895(1714,⋅)
χ3895(1784,⋅)
χ3895(1809,⋅)
χ3895(2004,⋅)
χ3895(2099,⋅)
χ3895(2134,⋅)
χ3895(2194,⋅)
χ3895(2209,⋅)
χ3895(2304,⋅)
χ3895(2399,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3117,2871,1236) → (−1,e(98),e(2017))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ3895(594,a) |
1 | 1 | e(4522) | e(3629) | e(4544) | e(18053) | e(6059) | e(157) | e(1811) | e(6013) | e(6047) | e(18053) |