Properties

Label 3895.594
Modulus 38953895
Conductor 38953895
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([90,160,153]))
 
pari: [g,chi] = znchar(Mod(594,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 180180
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.gb

χ3895(74,)\chi_{3895}(74,\cdot) χ3895(169,)\chi_{3895}(169,\cdot) χ3895(244,)\chi_{3895}(244,\cdot) χ3895(289,)\chi_{3895}(289,\cdot) χ3895(389,)\chi_{3895}(389,\cdot) χ3895(484,)\chi_{3895}(484,\cdot) χ3895(579,)\chi_{3895}(579,\cdot) χ3895(594,)\chi_{3895}(594,\cdot) χ3895(689,)\chi_{3895}(689,\cdot) χ3895(784,)\chi_{3895}(784,\cdot) χ3895(859,)\chi_{3895}(859,\cdot) χ3895(1004,)\chi_{3895}(1004,\cdot) χ3895(1099,)\chi_{3895}(1099,\cdot) χ3895(1184,)\chi_{3895}(1184,\cdot) χ3895(1194,)\chi_{3895}(1194,\cdot) χ3895(1279,)\chi_{3895}(1279,\cdot) χ3895(1374,)\chi_{3895}(1374,\cdot) χ3895(1594,)\chi_{3895}(1594,\cdot) χ3895(1619,)\chi_{3895}(1619,\cdot) χ3895(1689,)\chi_{3895}(1689,\cdot) χ3895(1714,)\chi_{3895}(1714,\cdot) χ3895(1784,)\chi_{3895}(1784,\cdot) χ3895(1809,)\chi_{3895}(1809,\cdot) χ3895(2004,)\chi_{3895}(2004,\cdot) χ3895(2099,)\chi_{3895}(2099,\cdot) χ3895(2134,)\chi_{3895}(2134,\cdot) χ3895(2194,)\chi_{3895}(2194,\cdot) χ3895(2209,)\chi_{3895}(2209,\cdot) χ3895(2304,)\chi_{3895}(2304,\cdot) χ3895(2399,)\chi_{3895}(2399,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(1,e(89),e(1720))(-1,e\left(\frac{8}{9}\right),e\left(\frac{17}{20}\right))

First values

aa 1-11122334466778899111112121313
χ3895(594,a) \chi_{ 3895 }(594, a) 1111e(2245)e\left(\frac{22}{45}\right)e(2936)e\left(\frac{29}{36}\right)e(4445)e\left(\frac{44}{45}\right)e(53180)e\left(\frac{53}{180}\right)e(5960)e\left(\frac{59}{60}\right)e(715)e\left(\frac{7}{15}\right)e(1118)e\left(\frac{11}{18}\right)e(1360)e\left(\frac{13}{60}\right)e(4760)e\left(\frac{47}{60}\right)e(53180)e\left(\frac{53}{180}\right)
sage: chi.jacobi_sum(n)
 
χ3895(594,a)   \chi_{ 3895 }(594,a) \; at   a=\;a = e.g. 2