Properties

Label 390.199
Modulus 390390
Conductor 6565
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,1]))
 
pari: [g,chi] = znchar(Mod(199,390))
 

Basic properties

Modulus: 390390
Conductor: 6565
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ65(4,)\chi_{65}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 390.x

χ390(49,)\chi_{390}(49,\cdot) χ390(199,)\chi_{390}(199,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.46411625.1

Values on generators

(131,157,301)(131,157,301)(1,1,e(16))(1,-1,e\left(\frac{1}{6}\right))

First values

aa 1-11177111117171919232329293131373741414343
χ390(199,a) \chi_{ 390 }(199, a) 1111e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)1-1e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ390(199,a)   \chi_{ 390 }(199,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ390(199,))   \tau_{ a }( \chi_{ 390 }(199,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ390(199,),χ390(n,))   J(\chi_{ 390 }(199,·),\chi_{ 390 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ390(199,))  K(a,b,\chi_{ 390 }(199,·)) \; at   a,b=\; a,b = e.g. 1,2