from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(392, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,21,37]))
pari: [g,chi] = znchar(Mod(269,392))
Basic properties
Modulus: | \(392\) | |
Conductor: | \(392\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 392.bf
\(\chi_{392}(5,\cdot)\) \(\chi_{392}(45,\cdot)\) \(\chi_{392}(61,\cdot)\) \(\chi_{392}(101,\cdot)\) \(\chi_{392}(157,\cdot)\) \(\chi_{392}(173,\cdot)\) \(\chi_{392}(213,\cdot)\) \(\chi_{392}(229,\cdot)\) \(\chi_{392}(269,\cdot)\) \(\chi_{392}(285,\cdot)\) \(\chi_{392}(341,\cdot)\) \(\chi_{392}(381,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.0.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1 |
Values on generators
\((295,197,297)\) → \((1,-1,e\left(\frac{37}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\( \chi_{ 392 }(269, a) \) | \(-1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)