Properties

Label 392.285
Modulus 392392
Conductor 392392
Order 4242
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,21,23]))
 
pari: [g,chi] = znchar(Mod(285,392))
 

Basic properties

Modulus: 392392
Conductor: 392392
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 392.bf

χ392(5,)\chi_{392}(5,\cdot) χ392(45,)\chi_{392}(45,\cdot) χ392(61,)\chi_{392}(61,\cdot) χ392(101,)\chi_{392}(101,\cdot) χ392(157,)\chi_{392}(157,\cdot) χ392(173,)\chi_{392}(173,\cdot) χ392(213,)\chi_{392}(213,\cdot) χ392(229,)\chi_{392}(229,\cdot) χ392(269,)\chi_{392}(269,\cdot) χ392(285,)\chi_{392}(285,\cdot) χ392(341,)\chi_{392}(341,\cdot) χ392(381,)\chi_{392}(381,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: 42.0.1090030896264192289800449659845679818091197961133776603876122561317234873686091104256.1

Values on generators

(295,197,297)(295,197,297)(1,1,e(2342))(1,-1,e\left(\frac{23}{42}\right))

First values

aa 1-1113355991111131315151717191923232525
χ392(285,a) \chi_{ 392 }(285, a) 1-111e(121)e\left(\frac{1}{21}\right)e(821)e\left(\frac{8}{21}\right)e(221)e\left(\frac{2}{21}\right)e(1742)e\left(\frac{17}{42}\right)e(47)e\left(\frac{4}{7}\right)e(37)e\left(\frac{3}{7}\right)e(2942)e\left(\frac{29}{42}\right)e(23)e\left(\frac{2}{3}\right)e(1721)e\left(\frac{17}{21}\right)e(1621)e\left(\frac{16}{21}\right)
sage: chi.jacobi_sum(n)
 
χ392(285,a)   \chi_{ 392 }(285,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ392(285,))   \tau_{ a }( \chi_{ 392 }(285,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ392(285,),χ392(n,))   J(\chi_{ 392 }(285,·),\chi_{ 392 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ392(285,))  K(a,b,\chi_{ 392 }(285,·)) \; at   a,b=\; a,b = e.g. 1,2