L(s) = 1 | + (0.955 + 0.294i)3-s + (−0.733 + 0.680i)5-s + (0.826 + 0.563i)9-s + (−0.826 + 0.563i)11-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (0.365 − 0.930i)23-s + (0.0747 − 0.997i)25-s + (0.623 + 0.781i)27-s + (−0.623 + 0.781i)29-s + (0.5 − 0.866i)31-s + (−0.955 + 0.294i)33-s + (0.988 + 0.149i)37-s + ⋯ |
L(s) = 1 | + (0.955 + 0.294i)3-s + (−0.733 + 0.680i)5-s + (0.826 + 0.563i)9-s + (−0.826 + 0.563i)11-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (0.365 − 0.930i)23-s + (0.0747 − 0.997i)25-s + (0.623 + 0.781i)27-s + (−0.623 + 0.781i)29-s + (0.5 − 0.866i)31-s + (−0.955 + 0.294i)33-s + (0.988 + 0.149i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0427 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0427 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6803427533 - 0.7100621476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6803427533 - 0.7100621476i\) |
\(L(1)\) |
\(\approx\) |
\(1.032718105 + 0.07274365166i\) |
\(L(1)\) |
\(\approx\) |
\(1.032718105 + 0.07274365166i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.955 + 0.294i)T \) |
| 5 | \( 1 + (-0.733 + 0.680i)T \) |
| 11 | \( 1 + (-0.826 + 0.563i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (-0.365 - 0.930i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.365 - 0.930i)T \) |
| 29 | \( 1 + (-0.623 + 0.781i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.988 + 0.149i)T \) |
| 41 | \( 1 + (0.222 + 0.974i)T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T \) |
| 53 | \( 1 + (0.988 - 0.149i)T \) |
| 59 | \( 1 + (-0.733 - 0.680i)T \) |
| 61 | \( 1 + (-0.988 - 0.149i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.0747 + 0.997i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.900 + 0.433i)T \) |
| 89 | \( 1 + (-0.826 - 0.563i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.32569823829457606669070214255, −23.890294364217125712400107063208, −22.94852095625988070346539524684, −21.40449217972606616826388985054, −21.075196952865455299948155853918, −19.87274427596621910052396979072, −19.37417103956034881019573753925, −18.66424865356228416610773772457, −17.401236094232942525037645702500, −16.41798582445063492773953376982, −15.47596387217556112720457630143, −14.807740739952319075412642334805, −13.702624952224089191945761488125, −12.85107897866236963981929950114, −12.181633068402145709998433483921, −10.964108534260790000444265173919, −9.7568616391741779502001063654, −8.80690690652337987220427053568, −7.99803231294197944412544023971, −7.36298549520942760628970661329, −5.93799405308837629906364904198, −4.57888460502474408550866419964, −3.71407262955854739303469639222, −2.53197098480124441459900202335, −1.298583149487686324574490623322,
0.23470224434600038651792229127, 2.40576387064497229843928732189, 2.8665908927099713649924344920, 4.23318507138911775711811437962, 5.01092283770255809302903820637, 6.85799027297320002989798592919, 7.49831870292937420569849755207, 8.370744811124707058502618431331, 9.50659677976628763963701476157, 10.37276193718787323559756744202, 11.24592593901866821785960374003, 12.51977255790164820493661064315, 13.343556417018077204386998640638, 14.485167960505510344301308692678, 15.15160273099884249872663883000, 15.68487173351106757779538433587, 16.844269469076334241897774542835, 18.237455082151163479241012752769, 18.730057552480973434291833174888, 19.94949168627893550722555915113, 20.18120806189071127716387678678, 21.39309837176308404186420947904, 22.25533892978246645813890123136, 23.05417396729178609325645054616, 24.11696398059342280596788507131