Properties

Label 1-392-392.285-r1-0-0
Degree $1$
Conductor $392$
Sign $-0.0427 - 0.999i$
Analytic cond. $42.1262$
Root an. cond. $42.1262$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.955 + 0.294i)3-s + (−0.733 + 0.680i)5-s + (0.826 + 0.563i)9-s + (−0.826 + 0.563i)11-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (0.365 − 0.930i)23-s + (0.0747 − 0.997i)25-s + (0.623 + 0.781i)27-s + (−0.623 + 0.781i)29-s + (0.5 − 0.866i)31-s + (−0.955 + 0.294i)33-s + (0.988 + 0.149i)37-s + ⋯
L(s)  = 1  + (0.955 + 0.294i)3-s + (−0.733 + 0.680i)5-s + (0.826 + 0.563i)9-s + (−0.826 + 0.563i)11-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.365 − 0.930i)17-s + (−0.5 − 0.866i)19-s + (0.365 − 0.930i)23-s + (0.0747 − 0.997i)25-s + (0.623 + 0.781i)27-s + (−0.623 + 0.781i)29-s + (0.5 − 0.866i)31-s + (−0.955 + 0.294i)33-s + (0.988 + 0.149i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0427 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0427 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $-0.0427 - 0.999i$
Analytic conductor: \(42.1262\)
Root analytic conductor: \(42.1262\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{392} (285, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 392,\ (1:\ ),\ -0.0427 - 0.999i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6803427533 - 0.7100621476i\)
\(L(\frac12)\) \(\approx\) \(0.6803427533 - 0.7100621476i\)
\(L(1)\) \(\approx\) \(1.032718105 + 0.07274365166i\)
\(L(1)\) \(\approx\) \(1.032718105 + 0.07274365166i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + (0.955 + 0.294i)T \)
5 \( 1 + (-0.733 + 0.680i)T \)
11 \( 1 + (-0.826 + 0.563i)T \)
13 \( 1 + (-0.900 - 0.433i)T \)
17 \( 1 + (-0.365 - 0.930i)T \)
19 \( 1 + (-0.5 - 0.866i)T \)
23 \( 1 + (0.365 - 0.930i)T \)
29 \( 1 + (-0.623 + 0.781i)T \)
31 \( 1 + (0.5 - 0.866i)T \)
37 \( 1 + (0.988 + 0.149i)T \)
41 \( 1 + (0.222 + 0.974i)T \)
43 \( 1 + (0.222 - 0.974i)T \)
47 \( 1 + (-0.0747 - 0.997i)T \)
53 \( 1 + (0.988 - 0.149i)T \)
59 \( 1 + (-0.733 - 0.680i)T \)
61 \( 1 + (-0.988 - 0.149i)T \)
67 \( 1 + (0.5 - 0.866i)T \)
71 \( 1 + (0.623 + 0.781i)T \)
73 \( 1 + (-0.0747 + 0.997i)T \)
79 \( 1 + (-0.5 - 0.866i)T \)
83 \( 1 + (-0.900 + 0.433i)T \)
89 \( 1 + (-0.826 - 0.563i)T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.32569823829457606669070214255, −23.890294364217125712400107063208, −22.94852095625988070346539524684, −21.40449217972606616826388985054, −21.075196952865455299948155853918, −19.87274427596621910052396979072, −19.37417103956034881019573753925, −18.66424865356228416610773772457, −17.401236094232942525037645702500, −16.41798582445063492773953376982, −15.47596387217556112720457630143, −14.807740739952319075412642334805, −13.702624952224089191945761488125, −12.85107897866236963981929950114, −12.181633068402145709998433483921, −10.964108534260790000444265173919, −9.7568616391741779502001063654, −8.80690690652337987220427053568, −7.99803231294197944412544023971, −7.36298549520942760628970661329, −5.93799405308837629906364904198, −4.57888460502474408550866419964, −3.71407262955854739303469639222, −2.53197098480124441459900202335, −1.298583149487686324574490623322, 0.23470224434600038651792229127, 2.40576387064497229843928732189, 2.8665908927099713649924344920, 4.23318507138911775711811437962, 5.01092283770255809302903820637, 6.85799027297320002989798592919, 7.49831870292937420569849755207, 8.370744811124707058502618431331, 9.50659677976628763963701476157, 10.37276193718787323559756744202, 11.24592593901866821785960374003, 12.51977255790164820493661064315, 13.343556417018077204386998640638, 14.485167960505510344301308692678, 15.15160273099884249872663883000, 15.68487173351106757779538433587, 16.844269469076334241897774542835, 18.237455082151163479241012752769, 18.730057552480973434291833174888, 19.94949168627893550722555915113, 20.18120806189071127716387678678, 21.39309837176308404186420947904, 22.25533892978246645813890123136, 23.05417396729178609325645054616, 24.11696398059342280596788507131

Graph of the $Z$-function along the critical line