Properties

Label 3960.107
Modulus $3960$
Conductor $1320$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,10,5,6]))
 
pari: [g,chi] = znchar(Mod(107,3960))
 

Basic properties

Modulus: \(3960\)
Conductor: \(1320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1320}(107,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3960.fb

\(\chi_{3960}(107,\cdot)\) \(\chi_{3960}(827,\cdot)\) \(\chi_{3960}(1403,\cdot)\) \(\chi_{3960}(1547,\cdot)\) \(\chi_{3960}(2483,\cdot)\) \(\chi_{3960}(2987,\cdot)\) \(\chi_{3960}(3203,\cdot)\) \(\chi_{3960}(3923,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.10757982042338190187612372992000000000000000.1

Values on generators

\((991,1981,3521,2377,2521)\) → \((-1,-1,-1,i,e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3960 }(107, a) \) \(1\)\(1\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(-i\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3960 }(107,a) \;\) at \(\;a = \) e.g. 2