Properties

Label 3960.2749
Modulus $3960$
Conductor $3960$
Order $6$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,2,3,3]))
 
pari: [g,chi] = znchar(Mod(2749,3960))
 

Basic properties

Modulus: \(3960\)
Conductor: \(3960\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3960.cm

\(\chi_{3960}(1429,\cdot)\) \(\chi_{3960}(2749,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.0.558892224000.14

Values on generators

\((991,1981,3521,2377,2521)\) → \((1,-1,e\left(\frac{1}{3}\right),-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3960 }(2749, a) \) \(-1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3960 }(2749,a) \;\) at \(\;a = \) e.g. 2