sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3960, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,50,15,54]))
pari:[g,chi] = znchar(Mod(3317,3960))
Modulus: | 3960 | |
Conductor: | 3960 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3960(173,⋅)
χ3960(293,⋅)
χ3960(437,⋅)
χ3960(677,⋅)
χ3960(893,⋅)
χ3960(1157,⋅)
χ3960(1613,⋅)
χ3960(1733,⋅)
χ3960(1757,⋅)
χ3960(1877,⋅)
χ3960(2477,⋅)
χ3960(2813,⋅)
χ3960(3053,⋅)
χ3960(3197,⋅)
χ3960(3317,⋅)
χ3960(3533,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(991,1981,3521,2377,2521) → (1,−1,e(65),i,e(109))
a |
−1 | 1 | 7 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ3960(3317,a) |
−1 | 1 | e(6053) | e(6049) | e(2017) | e(107) | e(1211) | e(152) | e(151) | e(2011) | e(1513) | e(121) |
sage:chi.jacobi_sum(n)