Properties

Label 3960.601
Modulus $3960$
Conductor $99$
Order $30$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,20,0,21]))
 
pari: [g,chi] = znchar(Mod(601,3960))
 

Basic properties

Modulus: \(3960\)
Conductor: \(99\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{99}(7,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3960.fv

\(\chi_{3960}(481,\cdot)\) \(\chi_{3960}(601,\cdot)\) \(\chi_{3960}(1201,\cdot)\) \(\chi_{3960}(1921,\cdot)\) \(\chi_{3960}(2041,\cdot)\) \(\chi_{3960}(3121,\cdot)\) \(\chi_{3960}(3361,\cdot)\) \(\chi_{3960}(3841,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.0.159386923550435671074967363509984324121230045171.1

Values on generators

\((991,1981,3521,2377,2521)\) → \((1,1,e\left(\frac{2}{3}\right),1,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3960 }(601, a) \) \(-1\)\(1\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3960 }(601,a) \;\) at \(\;a = \) e.g. 2