Basic properties
Modulus: | \(3971\) | |
Conductor: | \(3971\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(342\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3971.bn
\(\chi_{3971}(10,\cdot)\) \(\chi_{3971}(21,\cdot)\) \(\chi_{3971}(32,\cdot)\) \(\chi_{3971}(98,\cdot)\) \(\chi_{3971}(109,\cdot)\) \(\chi_{3971}(186,\cdot)\) \(\chi_{3971}(219,\cdot)\) \(\chi_{3971}(230,\cdot)\) \(\chi_{3971}(241,\cdot)\) \(\chi_{3971}(318,\cdot)\) \(\chi_{3971}(395,\cdot)\) \(\chi_{3971}(428,\cdot)\) \(\chi_{3971}(439,\cdot)\) \(\chi_{3971}(450,\cdot)\) \(\chi_{3971}(516,\cdot)\) \(\chi_{3971}(527,\cdot)\) \(\chi_{3971}(604,\cdot)\) \(\chi_{3971}(637,\cdot)\) \(\chi_{3971}(648,\cdot)\) \(\chi_{3971}(659,\cdot)\) \(\chi_{3971}(725,\cdot)\) \(\chi_{3971}(736,\cdot)\) \(\chi_{3971}(813,\cdot)\) \(\chi_{3971}(846,\cdot)\) \(\chi_{3971}(857,\cdot)\) \(\chi_{3971}(868,\cdot)\) \(\chi_{3971}(934,\cdot)\) \(\chi_{3971}(945,\cdot)\) \(\chi_{3971}(1022,\cdot)\) \(\chi_{3971}(1066,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{171})$ |
Fixed field: | Number field defined by a degree 342 polynomial (not computed) |
Values on generators
\((1806,2168)\) → \((-1,e\left(\frac{101}{342}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3971 }(186, a) \) | \(1\) | \(1\) | \(e\left(\frac{136}{171}\right)\) | \(e\left(\frac{17}{342}\right)\) | \(e\left(\frac{101}{171}\right)\) | \(e\left(\frac{88}{171}\right)\) | \(e\left(\frac{289}{342}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{22}{57}\right)\) | \(e\left(\frac{17}{171}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{73}{114}\right)\) |