Properties

Label 399.80
Modulus $399$
Conductor $399$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,3,2]))
 
pari: [g,chi] = znchar(Mod(80,399))
 

Basic properties

Modulus: \(399\)
Conductor: \(399\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 399.cb

\(\chi_{399}(5,\cdot)\) \(\chi_{399}(80,\cdot)\) \(\chi_{399}(101,\cdot)\) \(\chi_{399}(131,\cdot)\) \(\chi_{399}(320,\cdot)\) \(\chi_{399}(332,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((134,115,211)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 399 }(80, a) \) \(1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{18}\right)\)\(-1\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 399 }(80,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 399 }(80,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 399 }(80,·),\chi_{ 399 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 399 }(80,·)) \;\) at \(\; a,b = \) e.g. 1,2