Properties

Label 400.101
Modulus 400400
Conductor 1616
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0]))
 
pari: [g,chi] = znchar(Mod(101,400))
 

Basic properties

Modulus: 400400
Conductor: 1616
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ16(5,)\chi_{16}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 400.l

χ400(101,)\chi_{400}(101,\cdot) χ400(301,)\chi_{400}(301,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: Q(ζ16)+\Q(\zeta_{16})^+

Values on generators

(351,101,177)(351,101,177)(1,i,1)(1,i,1)

First values

aa 1-1113377991111131317171919212123232727
χ400(101,a) \chi_{ 400 }(101, a) 1111i-i1-11-1iii-i11i-iii1-1ii
sage: chi.jacobi_sum(n)
 
χ400(101,a)   \chi_{ 400 }(101,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ400(101,))   \tau_{ a }( \chi_{ 400 }(101,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ400(101,),χ400(n,))   J(\chi_{ 400 }(101,·),\chi_{ 400 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ400(101,))  K(a,b,\chi_{ 400 }(101,·)) \; at   a,b=\; a,b = e.g. 1,2