Properties

Label 400.21
Modulus 400400
Conductor 400400
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,12]))
 
pari: [g,chi] = znchar(Mod(21,400))
 

Basic properties

Modulus: 400400
Conductor: 400400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 400.be

χ400(21,)\chi_{400}(21,\cdot) χ400(61,)\chi_{400}(61,\cdot) χ400(141,)\chi_{400}(141,\cdot) χ400(181,)\chi_{400}(181,\cdot) χ400(221,)\chi_{400}(221,\cdot) χ400(261,)\chi_{400}(261,\cdot) χ400(341,)\chi_{400}(341,\cdot) χ400(381,)\chi_{400}(381,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(351,101,177)(351,101,177)(1,i,e(35))(1,i,e\left(\frac{3}{5}\right))

First values

aa 1-1113377991111131317171919212123232727
χ400(21,a) \chi_{ 400 }(21, a) 1111e(1920)e\left(\frac{19}{20}\right)1-1e(910)e\left(\frac{9}{10}\right)e(1720)e\left(\frac{17}{20}\right)e(320)e\left(\frac{3}{20}\right)e(45)e\left(\frac{4}{5}\right)e(1120)e\left(\frac{11}{20}\right)e(920)e\left(\frac{9}{20}\right)e(110)e\left(\frac{1}{10}\right)e(1720)e\left(\frac{17}{20}\right)
sage: chi.jacobi_sum(n)
 
χ400(21,a)   \chi_{ 400 }(21,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ400(21,))   \tau_{ a }( \chi_{ 400 }(21,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ400(21,),χ400(n,))   J(\chi_{ 400 }(21,·),\chi_{ 400 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ400(21,))  K(a,b,\chi_{ 400 }(21,·)) \; at   a,b=\; a,b = e.g. 1,2