Properties

Label 400.23
Modulus 400400
Conductor 200200
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,11]))
 
pari: [g,chi] = znchar(Mod(23,400))
 

Basic properties

Modulus: 400400
Conductor: 200200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ200(123,)\chi_{200}(123,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 400.bh

χ400(23,)\chi_{400}(23,\cdot) χ400(87,)\chi_{400}(87,\cdot) χ400(103,)\chi_{400}(103,\cdot) χ400(167,)\chi_{400}(167,\cdot) χ400(183,)\chi_{400}(183,\cdot) χ400(247,)\chi_{400}(247,\cdot) χ400(263,)\chi_{400}(263,\cdot) χ400(327,)\chi_{400}(327,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.3125000000000000000000000000000000.1

Values on generators

(351,101,177)(351,101,177)(1,1,e(1120))(-1,-1,e\left(\frac{11}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ400(23,a) \chi_{ 400 }(23, a) 1111e(1720)e\left(\frac{17}{20}\right)iie(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(1920)e\left(\frac{19}{20}\right)e(320)e\left(\frac{3}{20}\right)e(910)e\left(\frac{9}{10}\right)e(110)e\left(\frac{1}{10}\right)e(1120)e\left(\frac{11}{20}\right)e(1120)e\left(\frac{11}{20}\right)
sage: chi.jacobi_sum(n)
 
χ400(23,a)   \chi_{ 400 }(23,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ400(23,))   \tau_{ a }( \chi_{ 400 }(23,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ400(23,),χ400(n,))   J(\chi_{ 400 }(23,·),\chi_{ 400 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ400(23,))  K(a,b,\chi_{ 400 }(23,·)) \; at   a,b=\; a,b = e.g. 1,2