Properties

Label 400.33
Modulus 400400
Conductor 2525
Order 2020
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,3]))
 
pari: [g,chi] = znchar(Mod(33,400))
 

Basic properties

Modulus: 400400
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25(8,)\chi_{25}(8,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 400.bg

χ400(17,)\chi_{400}(17,\cdot) χ400(33,)\chi_{400}(33,\cdot) χ400(97,)\chi_{400}(97,\cdot) χ400(113,)\chi_{400}(113,\cdot) χ400(177,)\chi_{400}(177,\cdot) χ400(273,)\chi_{400}(273,\cdot) χ400(337,)\chi_{400}(337,\cdot) χ400(353,)\chi_{400}(353,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(351,101,177)(351,101,177)(1,1,e(320))(1,1,e\left(\frac{3}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ400(33,a) \chi_{ 400 }(33, a) 1-111e(120)e\left(\frac{1}{20}\right)i-ie(110)e\left(\frac{1}{10}\right)e(25)e\left(\frac{2}{5}\right)e(1720)e\left(\frac{17}{20}\right)e(1920)e\left(\frac{19}{20}\right)e(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(1320)e\left(\frac{13}{20}\right)e(320)e\left(\frac{3}{20}\right)
sage: chi.jacobi_sum(n)
 
χ400(33,a)   \chi_{ 400 }(33,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ400(33,))   \tau_{ a }( \chi_{ 400 }(33,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ400(33,),χ400(n,))   J(\chi_{ 400 }(33,·),\chi_{ 400 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ400(33,))  K(a,b,\chi_{ 400 }(33,·)) \; at   a,b=\; a,b = e.g. 1,2