Properties

Label 400.69
Modulus 400400
Conductor 400400
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,18]))
 
pari: [g,chi] = znchar(Mod(69,400))
 

Basic properties

Modulus: 400400
Conductor: 400400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 400.bl

χ400(29,)\chi_{400}(29,\cdot) χ400(69,)\chi_{400}(69,\cdot) χ400(109,)\chi_{400}(109,\cdot) χ400(189,)\chi_{400}(189,\cdot) χ400(229,)\chi_{400}(229,\cdot) χ400(269,)\chi_{400}(269,\cdot) χ400(309,)\chi_{400}(309,\cdot) χ400(389,)\chi_{400}(389,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.20971520000000000000000000000000000000000.1

Values on generators

(351,101,177)(351,101,177)(1,i,e(910))(1,i,e\left(\frac{9}{10}\right))

First values

aa 1-1113377991111131317171919212123232727
χ400(69,a) \chi_{ 400 }(69, a) 1111e(120)e\left(\frac{1}{20}\right)11e(110)e\left(\frac{1}{10}\right)e(1320)e\left(\frac{13}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(710)e\left(\frac{7}{10}\right)e(1920)e\left(\frac{19}{20}\right)e(120)e\left(\frac{1}{20}\right)e(25)e\left(\frac{2}{5}\right)e(320)e\left(\frac{3}{20}\right)
sage: chi.jacobi_sum(n)
 
χ400(69,a)   \chi_{ 400 }(69,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ400(69,))   \tau_{ a }( \chi_{ 400 }(69,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ400(69,),χ400(n,))   J(\chi_{ 400 }(69,·),\chi_{ 400 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ400(69,))  K(a,b,\chi_{ 400 }(69,·)) \; at   a,b=\; a,b = e.g. 1,2