sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(100))
M = H._module
chi = DirichletCharacter(H, M([50,25,4]))
pari:[g,chi] = znchar(Mod(391,4000))
χ4000(71,⋅)
χ4000(231,⋅)
χ4000(311,⋅)
χ4000(391,⋅)
χ4000(471,⋅)
χ4000(631,⋅)
χ4000(711,⋅)
χ4000(791,⋅)
χ4000(871,⋅)
χ4000(1031,⋅)
χ4000(1111,⋅)
χ4000(1191,⋅)
χ4000(1271,⋅)
χ4000(1431,⋅)
χ4000(1511,⋅)
χ4000(1591,⋅)
χ4000(1671,⋅)
χ4000(1831,⋅)
χ4000(1911,⋅)
χ4000(1991,⋅)
χ4000(2071,⋅)
χ4000(2231,⋅)
χ4000(2311,⋅)
χ4000(2391,⋅)
χ4000(2471,⋅)
χ4000(2631,⋅)
χ4000(2711,⋅)
χ4000(2791,⋅)
χ4000(2871,⋅)
χ4000(3031,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2751,2501,1377) → (−1,i,e(251))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ4000(391,a) |
−1 | 1 | e(10053) | e(52) | e(503) | e(10079) | e(10031) | e(2523) | e(10097) | e(10093) | e(256) | e(10059) |
sage:chi.jacobi_sum(n)