Properties

Label 4000.391
Modulus 40004000
Conductor 20002000
Order 100100
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(100)) M = H._module chi = DirichletCharacter(H, M([50,25,4]))
 
Copy content pari:[g,chi] = znchar(Mod(391,4000))
 

Basic properties

Modulus: 40004000
Conductor: 20002000
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 100100
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2000(891,)\chi_{2000}(891,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4000.cm

χ4000(71,)\chi_{4000}(71,\cdot) χ4000(231,)\chi_{4000}(231,\cdot) χ4000(311,)\chi_{4000}(311,\cdot) χ4000(391,)\chi_{4000}(391,\cdot) χ4000(471,)\chi_{4000}(471,\cdot) χ4000(631,)\chi_{4000}(631,\cdot) χ4000(711,)\chi_{4000}(711,\cdot) χ4000(791,)\chi_{4000}(791,\cdot) χ4000(871,)\chi_{4000}(871,\cdot) χ4000(1031,)\chi_{4000}(1031,\cdot) χ4000(1111,)\chi_{4000}(1111,\cdot) χ4000(1191,)\chi_{4000}(1191,\cdot) χ4000(1271,)\chi_{4000}(1271,\cdot) χ4000(1431,)\chi_{4000}(1431,\cdot) χ4000(1511,)\chi_{4000}(1511,\cdot) χ4000(1591,)\chi_{4000}(1591,\cdot) χ4000(1671,)\chi_{4000}(1671,\cdot) χ4000(1831,)\chi_{4000}(1831,\cdot) χ4000(1911,)\chi_{4000}(1911,\cdot) χ4000(1991,)\chi_{4000}(1991,\cdot) χ4000(2071,)\chi_{4000}(2071,\cdot) χ4000(2231,)\chi_{4000}(2231,\cdot) χ4000(2311,)\chi_{4000}(2311,\cdot) χ4000(2391,)\chi_{4000}(2391,\cdot) χ4000(2471,)\chi_{4000}(2471,\cdot) χ4000(2631,)\chi_{4000}(2631,\cdot) χ4000(2711,)\chi_{4000}(2711,\cdot) χ4000(2791,)\chi_{4000}(2791,\cdot) χ4000(2871,)\chi_{4000}(2871,\cdot) χ4000(3031,)\chi_{4000}(3031,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ100)\Q(\zeta_{100})
Fixed field: Number field defined by a degree 100 polynomial

Values on generators

(2751,2501,1377)(2751,2501,1377)(1,i,e(125))(-1,i,e\left(\frac{1}{25}\right))

First values

aa 1-1113377991111131317171919212123232727
χ4000(391,a) \chi_{ 4000 }(391, a) 1-111e(53100)e\left(\frac{53}{100}\right)e(25)e\left(\frac{2}{5}\right)e(350)e\left(\frac{3}{50}\right)e(79100)e\left(\frac{79}{100}\right)e(31100)e\left(\frac{31}{100}\right)e(2325)e\left(\frac{23}{25}\right)e(97100)e\left(\frac{97}{100}\right)e(93100)e\left(\frac{93}{100}\right)e(625)e\left(\frac{6}{25}\right)e(59100)e\left(\frac{59}{100}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ4000(391,a)   \chi_{ 4000 }(391,a) \; at   a=\;a = e.g. 2