Properties

Label 4000.cc
Modulus $4000$
Conductor $800$
Order $40$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,35,32]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(51,4000))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4000\)
Conductor: \(800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 800.cb
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: Number field defined by a degree 40 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{4000}(51,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{4000}(451,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{40}\right)\)
\(\chi_{4000}(651,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(-i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{4000}(851,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{39}{40}\right)\)
\(\chi_{4000}(1051,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{4000}(1451,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{4000}(1651,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{4000}(1851,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(-i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{4000}(2051,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{4000}(2451,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{4000}(2651,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(-i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{4000}(2851,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{4000}(3051,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{37}{40}\right)\)
\(\chi_{4000}(3451,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{4000}(3651,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{4000}(3851,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(-i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{40}\right)\)