from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4001, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([9]))
pari: [g,chi] = znchar(Mod(816,4001))
Basic properties
Modulus: | \(4001\) | |
Conductor: | \(4001\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4001.h
\(\chi_{4001}(152,\cdot)\) \(\chi_{4001}(816,\cdot)\) \(\chi_{4001}(1070,\cdot)\) \(\chi_{4001}(1305,\cdot)\) \(\chi_{4001}(2696,\cdot)\) \(\chi_{4001}(2931,\cdot)\) \(\chi_{4001}(3185,\cdot)\) \(\chi_{4001}(3849,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\(3\) → \(e\left(\frac{9}{20}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 4001 }(816, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(i\) |
sage: chi.jacobi_sum(n)