Properties

Label 4002.3403
Modulus $4002$
Conductor $667$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,14,23]))
 
pari: [g,chi] = znchar(Mod(3403,4002))
 

Basic properties

Modulus: \(4002\)
Conductor: \(667\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{667}(68,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4002.bd

\(\chi_{4002}(229,\cdot)\) \(\chi_{4002}(367,\cdot)\) \(\chi_{4002}(781,\cdot)\) \(\chi_{4002}(1471,\cdot)\) \(\chi_{4002}(1609,\cdot)\) \(\chi_{4002}(2161,\cdot)\) \(\chi_{4002}(2299,\cdot)\) \(\chi_{4002}(2989,\cdot)\) \(\chi_{4002}(3403,\cdot)\) \(\chi_{4002}(3541,\cdot)\) \(\chi_{4002}(3817,\cdot)\) \(\chi_{4002}(3955,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.35394489068231220324814698212289719250778220848093751207381.1

Values on generators

\((2669,3133,553)\) → \((1,-1,e\left(\frac{23}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 4002 }(3403, a) \) \(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(-i\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{27}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4002 }(3403,a) \;\) at \(\;a = \) e.g. 2