Properties

Label 4002.505
Modulus $4002$
Conductor $667$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,1]))
 
pari: [g,chi] = znchar(Mod(505,4002))
 

Basic properties

Modulus: \(4002\)
Conductor: \(667\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{667}(505,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4002.k

\(\chi_{4002}(505,\cdot)\) \(\chi_{4002}(3265,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.12901781.1

Values on generators

\((2669,3133,553)\) → \((1,-1,i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 4002 }(505, a) \) \(1\)\(1\)\(1\)\(-1\)\(-i\)\(-1\)\(-i\)\(-i\)\(1\)\(i\)\(-1\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4002 }(505,a) \;\) at \(\;a = \) e.g. 2