Properties

Label 4032.1819
Modulus 40324032
Conductor 448448
Order 1616
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4032, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,9,0,8]))
 
pari: [g,chi] = znchar(Mod(1819,4032))
 

Basic properties

Modulus: 40324032
Conductor: 448448
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ448(27,)\chi_{448}(27,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4032.fb

χ4032(307,)\chi_{4032}(307,\cdot) χ4032(811,)\chi_{4032}(811,\cdot) χ4032(1315,)\chi_{4032}(1315,\cdot) χ4032(1819,)\chi_{4032}(1819,\cdot) χ4032(2323,)\chi_{4032}(2323,\cdot) χ4032(2827,)\chi_{4032}(2827,\cdot) χ4032(3331,)\chi_{4032}(3331,\cdot) χ4032(3835,)\chi_{4032}(3835,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.3484608386920116940487669055488.4

Values on generators

(127,3781,1793,577)(127,3781,1793,577)(1,e(916),1,1)(-1,e\left(\frac{9}{16}\right),1,-1)

First values

aa 1-11155111113131717191923232525292931313737
χ4032(1819,a) \chi_{ 4032 }(1819, a) 1111e(116)e\left(\frac{1}{16}\right)e(516)e\left(\frac{5}{16}\right)e(1516)e\left(\frac{15}{16}\right)iie(1516)e\left(\frac{15}{16}\right)e(38)e\left(\frac{3}{8}\right)e(18)e\left(\frac{1}{8}\right)e(316)e\left(\frac{3}{16}\right)1-1e(116)e\left(\frac{1}{16}\right)
sage: chi.jacobi_sum(n)
 
χ4032(1819,a)   \chi_{ 4032 }(1819,a) \; at   a=\;a = e.g. 2