Properties

Label 4032.3481
Modulus 40324032
Conductor 20162016
Order 2424
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4032, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,16,8]))
 
pari: [g,chi] = znchar(Mod(3481,4032))
 

Basic properties

Modulus: 40324032
Conductor: 20162016
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2016(709,)\chi_{2016}(709,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4032.ga

χ4032(457,)\chi_{4032}(457,\cdot) χ4032(697,)\chi_{4032}(697,\cdot) χ4032(1465,)\chi_{4032}(1465,\cdot) χ4032(1705,)\chi_{4032}(1705,\cdot) χ4032(2473,)\chi_{4032}(2473,\cdot) χ4032(2713,)\chi_{4032}(2713,\cdot) χ4032(3481,)\chi_{4032}(3481,\cdot) χ4032(3721,)\chi_{4032}(3721,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

(127,3781,1793,577)(127,3781,1793,577)(1,e(18),e(23),e(13))(1,e\left(\frac{1}{8}\right),e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right))

First values

aa 1-11155111113131717191923232525292931313737
χ4032(3481,a) \chi_{ 4032 }(3481, a) 1111e(18)e\left(\frac{1}{8}\right)e(58)e\left(\frac{5}{8}\right)e(524)e\left(\frac{5}{24}\right)e(56)e\left(\frac{5}{6}\right)e(1324)e\left(\frac{13}{24}\right)i-iiie(124)e\left(\frac{1}{24}\right)e(23)e\left(\frac{2}{3}\right)e(1924)e\left(\frac{19}{24}\right)
sage: chi.jacobi_sum(n)
 
χ4032(3481,a)   \chi_{ 4032 }(3481,a) \; at   a=\;a = e.g. 2