from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4032, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,0,2,4]))
chi.galois_orbit()
[g,chi] = znchar(Mod(193,4032))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | ||
Conductor: | sage: chi.conductor()
pari: znconreyconductor(g,chi)
| |
Order: | sage: chi.multiplicative_order()
pari: charorder(g,chi)
| |
Real: | no | |
Primitive: | no, induced from 63.g | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | |
Fixed field: | 3.3.3969.2 |
Characters in Galois orbit
Character | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|