sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([2,3]))
pari:[g,chi] = znchar(Mod(109,405))
χ405(109,⋅)
χ405(379,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,82) → (e(31),−1)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ405(109,a) |
1 | 1 | e(65) | e(32) | e(65) | −1 | e(31) | e(61) | e(32) | e(31) | −1 | 1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)