from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([20,0]))
pari: [g,chi] = znchar(Mod(31,405))
Basic properties
Modulus: | \(405\) | |
Conductor: | \(81\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(27\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{81}(31,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 405.q
\(\chi_{405}(16,\cdot)\) \(\chi_{405}(31,\cdot)\) \(\chi_{405}(61,\cdot)\) \(\chi_{405}(76,\cdot)\) \(\chi_{405}(106,\cdot)\) \(\chi_{405}(121,\cdot)\) \(\chi_{405}(151,\cdot)\) \(\chi_{405}(166,\cdot)\) \(\chi_{405}(196,\cdot)\) \(\chi_{405}(211,\cdot)\) \(\chi_{405}(241,\cdot)\) \(\chi_{405}(256,\cdot)\) \(\chi_{405}(286,\cdot)\) \(\chi_{405}(301,\cdot)\) \(\chi_{405}(331,\cdot)\) \(\chi_{405}(346,\cdot)\) \(\chi_{405}(376,\cdot)\) \(\chi_{405}(391,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{27})\) |
Fixed field: | Number field defined by a degree 27 polynomial |
Values on generators
\((326,82)\) → \((e\left(\frac{10}{27}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 405 }(31, a) \) | \(1\) | \(1\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{8}{27}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)