Properties

Label 405.31
Modulus 405405
Conductor 8181
Order 2727
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,0]))
 
pari: [g,chi] = znchar(Mod(31,405))
 

Basic properties

Modulus: 405405
Conductor: 8181
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2727
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ81(31,)\chi_{81}(31,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.q

χ405(16,)\chi_{405}(16,\cdot) χ405(31,)\chi_{405}(31,\cdot) χ405(61,)\chi_{405}(61,\cdot) χ405(76,)\chi_{405}(76,\cdot) χ405(106,)\chi_{405}(106,\cdot) χ405(121,)\chi_{405}(121,\cdot) χ405(151,)\chi_{405}(151,\cdot) χ405(166,)\chi_{405}(166,\cdot) χ405(196,)\chi_{405}(196,\cdot) χ405(211,)\chi_{405}(211,\cdot) χ405(241,)\chi_{405}(241,\cdot) χ405(256,)\chi_{405}(256,\cdot) χ405(286,)\chi_{405}(286,\cdot) χ405(301,)\chi_{405}(301,\cdot) χ405(331,)\chi_{405}(331,\cdot) χ405(346,)\chi_{405}(346,\cdot) χ405(376,)\chi_{405}(376,\cdot) χ405(391,)\chi_{405}(391,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ27)\Q(\zeta_{27})
Fixed field: Number field defined by a degree 27 polynomial

Values on generators

(326,82)(326,82)(e(1027),1)(e\left(\frac{10}{27}\right),1)

First values

aa 1-11122447788111113131414161617171919
χ405(31,a) \chi_{ 405 }(31, a) 1111e(1027)e\left(\frac{10}{27}\right)e(2027)e\left(\frac{20}{27}\right)e(2527)e\left(\frac{25}{27}\right)e(19)e\left(\frac{1}{9}\right)e(2227)e\left(\frac{22}{27}\right)e(2627)e\left(\frac{26}{27}\right)e(827)e\left(\frac{8}{27}\right)e(1327)e\left(\frac{13}{27}\right)e(29)e\left(\frac{2}{9}\right)e(79)e\left(\frac{7}{9}\right)
sage: chi.jacobi_sum(n)
 
χ405(31,a)   \chi_{ 405 }(31,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(31,))   \tau_{ a }( \chi_{ 405 }(31,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(31,),χ405(n,))   J(\chi_{ 405 }(31,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(31,))  K(a,b,\chi_{ 405 }(31,·)) \; at   a,b=\; a,b = e.g. 1,2