Properties

Label 4050.1157
Modulus $4050$
Conductor $405$
Order $108$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,27]))
 
pari: [g,chi] = znchar(Mod(1157,4050))
 

Basic properties

Modulus: \(4050\)
Conductor: \(405\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{405}(347,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4050.bm

\(\chi_{4050}(257,\cdot)\) \(\chi_{4050}(293,\cdot)\) \(\chi_{4050}(407,\cdot)\) \(\chi_{4050}(443,\cdot)\) \(\chi_{4050}(707,\cdot)\) \(\chi_{4050}(743,\cdot)\) \(\chi_{4050}(857,\cdot)\) \(\chi_{4050}(893,\cdot)\) \(\chi_{4050}(1157,\cdot)\) \(\chi_{4050}(1193,\cdot)\) \(\chi_{4050}(1307,\cdot)\) \(\chi_{4050}(1343,\cdot)\) \(\chi_{4050}(1607,\cdot)\) \(\chi_{4050}(1643,\cdot)\) \(\chi_{4050}(1757,\cdot)\) \(\chi_{4050}(1793,\cdot)\) \(\chi_{4050}(2057,\cdot)\) \(\chi_{4050}(2093,\cdot)\) \(\chi_{4050}(2207,\cdot)\) \(\chi_{4050}(2243,\cdot)\) \(\chi_{4050}(2507,\cdot)\) \(\chi_{4050}(2543,\cdot)\) \(\chi_{4050}(2657,\cdot)\) \(\chi_{4050}(2693,\cdot)\) \(\chi_{4050}(2957,\cdot)\) \(\chi_{4050}(2993,\cdot)\) \(\chi_{4050}(3107,\cdot)\) \(\chi_{4050}(3143,\cdot)\) \(\chi_{4050}(3407,\cdot)\) \(\chi_{4050}(3443,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2351,3727)\) → \((e\left(\frac{11}{54}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 4050 }(1157, a) \) \(1\)\(1\)\(e\left(\frac{55}{108}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{41}{108}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{107}{108}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{43}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4050 }(1157,a) \;\) at \(\;a = \) e.g. 2