Properties

Label 4050.bd
Modulus $4050$
Conductor $675$
Order $45$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,18]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(91,4050))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4050\)
Conductor: \(675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(45\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 675.bc
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 45 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4050}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{4050}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{32}{45}\right)\)
\(\chi_{4050}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{4050}(631,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{4050}(721,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{4050}(991,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{4050}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{4050}(1261,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{44}{45}\right)\)
\(\chi_{4050}(1441,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{4050}(1531,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{4050}(1711,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{4050}(1981,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{4050}(2071,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{4050}(2341,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{4050}(2521,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{4050}(2611,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{4050}(2791,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{4050}(2881,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{4050}(3061,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{4050}(3331,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{4050}(3421,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{4050}(3691,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{4050}(3871,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{4050}(3961,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{45}\right)\)