Properties

Label 4080.11
Modulus $4080$
Conductor $816$
Order $16$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,4,8,0,7]))
 
pari: [g,chi] = znchar(Mod(11,4080))
 

Basic properties

Modulus: \(4080\)
Conductor: \(816\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{816}(11,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4080.il

\(\chi_{4080}(11,\cdot)\) \(\chi_{4080}(131,\cdot)\) \(\chi_{4080}(371,\cdot)\) \(\chi_{4080}(1091,\cdot)\) \(\chi_{4080}(1331,\cdot)\) \(\chi_{4080}(1451,\cdot)\) \(\chi_{4080}(1931,\cdot)\) \(\chi_{4080}(3611,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.330387545600365800521582857754247168.1

Values on generators

\((511,3061,1361,817,241)\) → \((-1,i,-1,1,e\left(\frac{7}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4080 }(11, a) \) \(-1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4080 }(11,a) \;\) at \(\;a = \) e.g. 2