Properties

Label 4080.41
Modulus $4080$
Conductor $408$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,8,8,0,11]))
 
pari: [g,chi] = znchar(Mod(41,4080))
 

Basic properties

Modulus: \(4080\)
Conductor: \(408\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{408}(245,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4080.ji

\(\chi_{4080}(41,\cdot)\) \(\chi_{4080}(521,\cdot)\) \(\chi_{4080}(1961,\cdot)\) \(\chi_{4080}(2441,\cdot)\) \(\chi_{4080}(2681,\cdot)\) \(\chi_{4080}(2921,\cdot)\) \(\chi_{4080}(3641,\cdot)\) \(\chi_{4080}(3881,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.315082116699567604562361581568.1

Values on generators

\((511,3061,1361,817,241)\) → \((1,-1,-1,1,e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4080 }(41, a) \) \(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4080 }(41,a) \;\) at \(\;a = \) e.g. 2