Properties

Label 4080.ke
Modulus $4080$
Conductor $4080$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,12,8,8,13]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(29,4080))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4080\)
Conductor: \(4080\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.129057635000142890828743303810252800000000.2

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{4080}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{4080}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{4080}(989,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{4080}(1229,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{4080}(1349,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{4080}(1829,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{4080}(3509,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{4080}(3989,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\)