Properties

Label 4096.2901
Modulus $4096$
Conductor $4096$
Order $1024$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4096, base_ring=CyclotomicField(1024))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,477]))
 
pari: [g,chi] = znchar(Mod(2901,4096))
 

Basic properties

Modulus: \(4096\)
Conductor: \(4096\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1024\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4096.u

\(\chi_{4096}(5,\cdot)\) \(\chi_{4096}(13,\cdot)\) \(\chi_{4096}(21,\cdot)\) \(\chi_{4096}(29,\cdot)\) \(\chi_{4096}(37,\cdot)\) \(\chi_{4096}(45,\cdot)\) \(\chi_{4096}(53,\cdot)\) \(\chi_{4096}(61,\cdot)\) \(\chi_{4096}(69,\cdot)\) \(\chi_{4096}(77,\cdot)\) \(\chi_{4096}(85,\cdot)\) \(\chi_{4096}(93,\cdot)\) \(\chi_{4096}(101,\cdot)\) \(\chi_{4096}(109,\cdot)\) \(\chi_{4096}(117,\cdot)\) \(\chi_{4096}(125,\cdot)\) \(\chi_{4096}(133,\cdot)\) \(\chi_{4096}(141,\cdot)\) \(\chi_{4096}(149,\cdot)\) \(\chi_{4096}(157,\cdot)\) \(\chi_{4096}(165,\cdot)\) \(\chi_{4096}(173,\cdot)\) \(\chi_{4096}(181,\cdot)\) \(\chi_{4096}(189,\cdot)\) \(\chi_{4096}(197,\cdot)\) \(\chi_{4096}(205,\cdot)\) \(\chi_{4096}(213,\cdot)\) \(\chi_{4096}(221,\cdot)\) \(\chi_{4096}(229,\cdot)\) \(\chi_{4096}(237,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1024})$
Fixed field: Number field defined by a degree 1024 polynomial (not computed)

Values on generators

\((4095,5)\) → \((1,e\left(\frac{477}{1024}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 4096 }(2901, a) \) \(1\)\(1\)\(e\left(\frac{439}{1024}\right)\)\(e\left(\frac{477}{1024}\right)\)\(e\left(\frac{305}{512}\right)\)\(e\left(\frac{439}{512}\right)\)\(e\left(\frac{225}{1024}\right)\)\(e\left(\frac{83}{1024}\right)\)\(e\left(\frac{229}{256}\right)\)\(e\left(\frac{235}{256}\right)\)\(e\left(\frac{91}{1024}\right)\)\(e\left(\frac{25}{1024}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4096 }(2901,a) \;\) at \(\;a = \) e.g. 2