Basic properties
Modulus: | \(4096\) | |
Conductor: | \(4096\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1024\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4096.u
\(\chi_{4096}(5,\cdot)\) \(\chi_{4096}(13,\cdot)\) \(\chi_{4096}(21,\cdot)\) \(\chi_{4096}(29,\cdot)\) \(\chi_{4096}(37,\cdot)\) \(\chi_{4096}(45,\cdot)\) \(\chi_{4096}(53,\cdot)\) \(\chi_{4096}(61,\cdot)\) \(\chi_{4096}(69,\cdot)\) \(\chi_{4096}(77,\cdot)\) \(\chi_{4096}(85,\cdot)\) \(\chi_{4096}(93,\cdot)\) \(\chi_{4096}(101,\cdot)\) \(\chi_{4096}(109,\cdot)\) \(\chi_{4096}(117,\cdot)\) \(\chi_{4096}(125,\cdot)\) \(\chi_{4096}(133,\cdot)\) \(\chi_{4096}(141,\cdot)\) \(\chi_{4096}(149,\cdot)\) \(\chi_{4096}(157,\cdot)\) \(\chi_{4096}(165,\cdot)\) \(\chi_{4096}(173,\cdot)\) \(\chi_{4096}(181,\cdot)\) \(\chi_{4096}(189,\cdot)\) \(\chi_{4096}(197,\cdot)\) \(\chi_{4096}(205,\cdot)\) \(\chi_{4096}(213,\cdot)\) \(\chi_{4096}(221,\cdot)\) \(\chi_{4096}(229,\cdot)\) \(\chi_{4096}(237,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{1024})$ |
Fixed field: | Number field defined by a degree 1024 polynomial (not computed) |
Values on generators
\((4095,5)\) → \((1,e\left(\frac{609}{1024}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 4096 }(133, a) \) | \(1\) | \(1\) | \(e\left(\frac{451}{1024}\right)\) | \(e\left(\frac{609}{1024}\right)\) | \(e\left(\frac{325}{512}\right)\) | \(e\left(\frac{451}{512}\right)\) | \(e\left(\frac{693}{1024}\right)\) | \(e\left(\frac{911}{1024}\right)\) | \(e\left(\frac{9}{256}\right)\) | \(e\left(\frac{7}{256}\right)\) | \(e\left(\frac{567}{1024}\right)\) | \(e\left(\frac{77}{1024}\right)\) |