Properties

Label 4140.19
Modulus 41404140
Conductor 460460
Order 2222
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,0,11,15]))
 
pari: [g,chi] = znchar(Mod(19,4140))
 

Basic properties

Modulus: 41404140
Conductor: 460460
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2222
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ460(19,)\chi_{460}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.cg

χ4140(19,)\chi_{4140}(19,\cdot) χ4140(199,)\chi_{4140}(199,\cdot) χ4140(379,)\chi_{4140}(379,\cdot) χ4140(559,)\chi_{4140}(559,\cdot) χ4140(1279,)\chi_{4140}(1279,\cdot) χ4140(1459,)\chi_{4140}(1459,\cdot) χ4140(1999,)\chi_{4140}(1999,\cdot) χ4140(2179,)\chi_{4140}(2179,\cdot) χ4140(2719,)\chi_{4140}(2719,\cdot) χ4140(3079,)\chi_{4140}(3079,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: 22.22.8083780427918435509708715954790400000000000.1

Values on generators

(2071,461,1657,3961)(2071,461,1657,3961)(1,1,1,e(1522))(-1,1,-1,e\left(\frac{15}{22}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ4140(19,a) \chi_{ 4140 }(19, a) 1111e(2122)e\left(\frac{21}{22}\right)e(711)e\left(\frac{7}{11}\right)e(122)e\left(\frac{1}{22}\right)e(311)e\left(\frac{3}{11}\right)e(811)e\left(\frac{8}{11}\right)e(311)e\left(\frac{3}{11}\right)e(1322)e\left(\frac{13}{22}\right)e(911)e\left(\frac{9}{11}\right)e(211)e\left(\frac{2}{11}\right)e(922)e\left(\frac{9}{22}\right)
sage: chi.jacobi_sum(n)
 
χ4140(19,a)   \chi_{ 4140 }(19,a) \; at   a=\;a = e.g. 2