Properties

Label 4140.2099
Modulus $4140$
Conductor $4140$
Order $66$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,11,33,54]))
 
pari: [g,chi] = znchar(Mod(2099,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(4140\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dh

\(\chi_{4140}(59,\cdot)\) \(\chi_{4140}(119,\cdot)\) \(\chi_{4140}(239,\cdot)\) \(\chi_{4140}(959,\cdot)\) \(\chi_{4140}(1139,\cdot)\) \(\chi_{4140}(1199,\cdot)\) \(\chi_{4140}(1319,\cdot)\) \(\chi_{4140}(1499,\cdot)\) \(\chi_{4140}(1559,\cdot)\) \(\chi_{4140}(2099,\cdot)\) \(\chi_{4140}(2279,\cdot)\) \(\chi_{4140}(2579,\cdot)\) \(\chi_{4140}(2819,\cdot)\) \(\chi_{4140}(2939,\cdot)\) \(\chi_{4140}(2999,\cdot)\) \(\chi_{4140}(3479,\cdot)\) \(\chi_{4140}(3659,\cdot)\) \(\chi_{4140}(3719,\cdot)\) \(\chi_{4140}(3899,\cdot)\) \(\chi_{4140}(4079,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((2071,461,1657,3961)\) → \((-1,e\left(\frac{1}{6}\right),-1,e\left(\frac{9}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(2099, a) \) \(1\)\(1\)\(e\left(\frac{7}{33}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{19}{66}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{59}{66}\right)\)\(e\left(\frac{49}{66}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{43}{66}\right)\)\(e\left(\frac{25}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(2099,a) \;\) at \(\;a = \) e.g. 2