Properties

Label 416.291
Modulus $416$
Conductor $416$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,3,6]))
 
pari: [g,chi] = znchar(Mod(291,416))
 

Basic properties

Modulus: \(416\)
Conductor: \(416\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 416.bd

\(\chi_{416}(83,\cdot)\) \(\chi_{416}(203,\cdot)\) \(\chi_{416}(291,\cdot)\) \(\chi_{416}(411,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.10365493399519232.1

Values on generators

\((287,261,353)\) → \((-1,e\left(\frac{3}{8}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 416 }(291, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(i\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 416 }(291,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 416 }(291,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 416 }(291,·),\chi_{ 416 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 416 }(291,·)) \;\) at \(\; a,b = \) e.g. 1,2