Properties

Label 4160.1893
Modulus 41604160
Conductor 41604160
Order 1616
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,12,4]))
 
pari: [g,chi] = znchar(Mod(1893,4160))
 

Basic properties

Modulus: 41604160
Conductor: 41604160
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4160.hv

χ4160(317,)\chi_{4160}(317,\cdot) χ4160(853,)\chi_{4160}(853,\cdot) χ4160(1357,)\chi_{4160}(1357,\cdot) χ4160(1893,)\chi_{4160}(1893,\cdot) χ4160(2397,)\chi_{4160}(2397,\cdot) χ4160(2933,)\chi_{4160}(2933,\cdot) χ4160(3437,)\chi_{4160}(3437,\cdot) χ4160(3973,)\chi_{4160}(3973,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.3438190509295256478027799611834368000000000000.4

Values on generators

(4031,261,2497,1601)(4031,261,2497,1601)(1,e(916),i,i)(1,e\left(\frac{9}{16}\right),-i,i)

First values

aa 1-1113377991111171719192121232327272929
χ4160(1893,a) \chi_{ 4160 }(1893, a) 1111e(1516)e\left(\frac{15}{16}\right)e(18)e\left(\frac{1}{8}\right)e(78)e\left(\frac{7}{8}\right)e(916)e\left(\frac{9}{16}\right)11e(1116)e\left(\frac{11}{16}\right)e(116)e\left(\frac{1}{16}\right)e(58)e\left(\frac{5}{8}\right)e(1316)e\left(\frac{13}{16}\right)e(1116)e\left(\frac{11}{16}\right)
sage: chi.jacobi_sum(n)
 
χ4160(1893,a)   \chi_{ 4160 }(1893,a) \; at   a=\;a = e.g. 2