Properties

Label 4160.3271
Modulus $4160$
Conductor $416$
Order $8$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,5,0,2]))
 
pari: [g,chi] = znchar(Mod(3271,4160))
 

Basic properties

Modulus: \(4160\)
Conductor: \(416\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{416}(203,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4160.dr

\(\chi_{4160}(1191,\cdot)\) \(\chi_{4160}(1591,\cdot)\) \(\chi_{4160}(3271,\cdot)\) \(\chi_{4160}(3671,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.10365493399519232.1

Values on generators

\((4031,261,2497,1601)\) → \((-1,e\left(\frac{5}{8}\right),1,i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 4160 }(3271, a) \) \(1\)\(1\)\(e\left(\frac{3}{8}\right)\)\(-1\)\(-i\)\(e\left(\frac{3}{8}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4160 }(3271,a) \;\) at \(\;a = \) e.g. 2