Properties

Label 4160.4153
Modulus 41604160
Conductor 20802080
Order 2424
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,18,10]))
 
pari: [g,chi] = znchar(Mod(4153,4160))
 

Basic properties

Modulus: 41604160
Conductor: 20802080
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2080(1813,)\chi_{2080}(1813,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4160.it

χ4160(137,)\chi_{4160}(137,\cdot) χ4160(297,)\chi_{4160}(297,\cdot) χ4160(1913,)\chi_{4160}(1913,\cdot) χ4160(2073,)\chi_{4160}(2073,\cdot) χ4160(2217,)\chi_{4160}(2217,\cdot) χ4160(2377,)\chi_{4160}(2377,\cdot) χ4160(3993,)\chi_{4160}(3993,\cdot) χ4160(4153,)\chi_{4160}(4153,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

(4031,261,2497,1601)(4031,261,2497,1601)(1,e(58),i,e(512))(1,e\left(\frac{5}{8}\right),-i,e\left(\frac{5}{12}\right))

First values

aa 1-1113377991111171719192121232327272929
χ4160(4153,a) \chi_{ 4160 }(4153, a) 1111e(1924)e\left(\frac{19}{24}\right)e(712)e\left(\frac{7}{12}\right)e(712)e\left(\frac{7}{12}\right)e(124)e\left(\frac{1}{24}\right)e(112)e\left(\frac{1}{12}\right)e(2324)e\left(\frac{23}{24}\right)e(38)e\left(\frac{3}{8}\right)e(16)e\left(\frac{1}{6}\right)e(38)e\left(\frac{3}{8}\right)e(124)e\left(\frac{1}{24}\right)
sage: chi.jacobi_sum(n)
 
χ4160(4153,a)   \chi_{ 4160 }(4153,a) \; at   a=\;a = e.g. 2