Properties

Label 4212.2407
Modulus $4212$
Conductor $4212$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4212, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([54,76,9]))
 
pari: [g,chi] = znchar(Mod(2407,4212))
 

Basic properties

Modulus: \(4212\)
Conductor: \(4212\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4212.eu

\(\chi_{4212}(7,\cdot)\) \(\chi_{4212}(67,\cdot)\) \(\chi_{4212}(331,\cdot)\) \(\chi_{4212}(427,\cdot)\) \(\chi_{4212}(475,\cdot)\) \(\chi_{4212}(535,\cdot)\) \(\chi_{4212}(799,\cdot)\) \(\chi_{4212}(895,\cdot)\) \(\chi_{4212}(943,\cdot)\) \(\chi_{4212}(1003,\cdot)\) \(\chi_{4212}(1267,\cdot)\) \(\chi_{4212}(1363,\cdot)\) \(\chi_{4212}(1411,\cdot)\) \(\chi_{4212}(1471,\cdot)\) \(\chi_{4212}(1735,\cdot)\) \(\chi_{4212}(1831,\cdot)\) \(\chi_{4212}(1879,\cdot)\) \(\chi_{4212}(1939,\cdot)\) \(\chi_{4212}(2203,\cdot)\) \(\chi_{4212}(2299,\cdot)\) \(\chi_{4212}(2347,\cdot)\) \(\chi_{4212}(2407,\cdot)\) \(\chi_{4212}(2671,\cdot)\) \(\chi_{4212}(2767,\cdot)\) \(\chi_{4212}(2815,\cdot)\) \(\chi_{4212}(2875,\cdot)\) \(\chi_{4212}(3139,\cdot)\) \(\chi_{4212}(3235,\cdot)\) \(\chi_{4212}(3283,\cdot)\) \(\chi_{4212}(3343,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2107,3485,3889)\) → \((-1,e\left(\frac{19}{27}\right),e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4212 }(2407, a) \) \(1\)\(1\)\(e\left(\frac{101}{108}\right)\)\(e\left(\frac{73}{108}\right)\)\(e\left(\frac{25}{108}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{47}{54}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{35}{108}\right)\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4212 }(2407,a) \;\) at \(\;a = \) e.g. 2